171 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

SSAO в играх что это

Содержание

Графика в играх: окклюзия, сглаживание, фильтрация — Как и с чем её едят

Приветствую всех Стопгеймеров! Давайте начистоту, вы ведь тоже заходите в только купленную игру, но сперва кликаете на графические настройки? Кто ради чего, кому-то ради самоутверждения надо глянуть на ультра-автонастройку благодаря своему мощному «железу», а кто-то просто лезет туда ради интереса.Однако, задумывались ли вы, чем отличаются FXAA и TXAA, или 8х и 16х анизотропная фильтрация? Как-раз в этом блоге, группа Abuse Reviews сейчас вам расскажет и покажет, что же это за фильтрации такие, как они работают и с чем их едят. Поехали!

Давайте начнём с самого-самого простого

Разрешение экрана

Мало кто не знает, что разрешение — это количество отображаемых пикселей по горизонтали и вертикали. От этой настройки также зависит качество картинки и то, как сильно будут выражены «лесенки» в переходах между разными плоскостямиповерхностями. Но почему же возникает этот графический артефакт? Дело в том, что все графические элементы в играх состоят из пикселей, но таких проблем с прямыми линиями не происходит, но стоит только чуть её наклонить, как появляются «лесенки». Возникает это из-за отсутствия плавного перехода между цветами, которое обеспечивает сглаживание, вот о нём мы сейчас и поговорим.

Сглаживание

Самое главное его предназначение — борьба с теми самыми «ступеньками», которые все так не любят. Сглаживание обеспечивает нам плавный переход между цветами, за счёт чего изображение получается куда комфортнее, устраняя «ступеньки». Да, картинка однозначно становится красивой, но всегда приходится чем-то жертвовать, а именно производительностью. За счёт появления новой задачи, процессору и видеокарте приходится рендерить(обрабатывать) все эти дополнительные оттенки, которое даёт нам сглаживание. Но, к счастью, существует много видов сглаживания, которые предоставляют нам разработчики в настройках. Их то мы сейчас и рассмотрим:


Проблем никогда не бывает мало. В этом случае нет никаких исключений, ведь кроме «ступенек» встречается такой артефакт, как разрыв картинки. Это происходит, когда ваши монитор и видеокарта пытаются работать синхронно, но по какой-то причине эти парни не могут этого сделать, причиной является частота кадров и частота обновления монитора. К примеру, вы находитесь в какой-то загруженной локации, а ваша видеокарта старается держать стабильную частоту, в то время как монитор обновляет изображение на одной и той же частоте. Если они не синхронизируются между собой, то как раз и появляется такой разрыв. И для решения этой проблемы предназначен следующий параметр:

Вертикальная синхронизация

Этот параметр заставляет работать видеокарту на той же частоте, что и монитор, однако из-за этого возникают уже другие проблемы, к примеру, частота кадров может сильно падать из-за того что в игре появляется слишком много объектов, которые приходится обрабатывать. Но и для этой беды есть решение, которое называется — горизонтальная синхронизация. Принцип действия заключается в том, что модуль, встроенный в монитор заставляет экран обновляться сразу же при получении нового кадра, что способствует идеальному совпадению частот видеокарты и монитора. Благодаря всему этому, производительность компьютера не уменьшается, а монитор и видеокарта работают максимально слаженно.

На этом о проблемах картинки и артефактах — всё

Тесселяция

Тут стоит обратить внимание на контур головы 47-го

А вот она создана не для того чтобы исправлять косяки в картинке, а улучшать её и делать более насыщенной и реалистичной. Многие из нас знают, что 3д-объекты в играх состоят из полигонов (мелких частиц). Тесселяция подразумевает разбиение полигонов на более мелкие части, чтобы генерировать больше деталей у объекта. Это особенно удобно для выделения высоты и глубины объектов. Также она способствует созданию более закругленных объектов без острых форм и углов.

Окклюзия окружения (Ambient Occlusion)

Лично я занимаюсь созданием 3д-моделей в Cinema 4D и довольно хорошо знаком с этой фичей.

Она позволяет создавать искусственные тени, таким образом, в идеале, геймдизайнеры и создатели 3д-анимаций предпочитают использовать движки, поддерживающие функцию глобального освещения, которое позволяет создавать освещение идентичное реальному, а всё благодаря вычислениям точных оттенков каждого из пикселей, в зависимости от общего количества света, попадаемого на него. Знаю, что звучит это сложновато, но как же это преобразовывает картинку… словами не описать. Такое освещение очень подходит для различных кинематографичных сцен в мультфильмах или кат-сцен в играх, но это оказывает очень сильную нагрузку на железо, но на то у нас и есть окклюзия окружения, которая создаёт искусственные тени там, где они должны располагаться.
Для начала стоит разобраться с освещением в играх. В них источником света является естественное освещение, которое является упрощённой версией глобального освещения, где расположение теней зависит от того, есть ли перед источником естественного освещения какое-либо препятствие, но это даёт нам более плоские тени в меньшем количестве, чем хотелось бы. Тут и наступает триумф окклюзии окружения, ведь она определяет расположение дополнительных теней с поммощью трассировки лучшей, а именно вычисляет, сколько солнечных лучшей блокируется рядом со стоящими объектами. То есть, если один объект загораживает другой, то поверхность второго объекта, разумеется, будет находиться в тени. Впадины, углубления и тому подобное начинает больше выделяться с помощью окклюзии.В огромном большинстве случаев этот параметр уже «вшит» в графические настройки, что не позволяет включать и выключать его. Но это всё окклюзия окружения в общем. Наверняка вы все сталкивались с такими параметрами освещения как SSAO,HBAO и HDAO?

Ну а что по кинематографичности?

Глубина резкости

Неплохо так нагружает вашу систему, но и так же неплохо придаёт картинке кинематографичности, а всё благодаря фокусу на конкретных объектах, благодаря чему, остальные объекты размываются. Но это может привнести неудобства, как например при игре в PUBG, во время выглядывания из окна (ну вы знаете, когда упираешься лицом в стену как идиот и видишь всё что происходит за ней) иногда замыливается вид в окне, а фокус идёт на стену или оконную раму. Очень раздражает. Однако кинематографичность, опять же, дарит нам положительные впечатления об игре.

Ну и последнее о чём хотелось бы рассказать

Анизотропная фильтрация

А вот этот параметр уж точно видел каждый, но далеко не все понимают как это работает. Объясню быстро и просто. Во имя сохранения FPS разработчики используют нехитрый трюк с понижением качества текстур и моделей по мере отдаления от них. Зачастую мы можем наблюдать размытие текстуры пола вдали от себя, но если мы включим фильтрацию, то границы между различными уровнями детализации размываются. Плюс такой фильтрации в том, что вы можете со спокойной душой ставить значение 16х, ведь этот параметр почти не оказывает давления на процессор и видеокарту.

Ну а на этом всё. Если вам понравился этот блог и вы узнали что-то новое, обязательно жмите на плюс, а также интересно узнать, нравится ли вам качество видеоформата, если вы его глянули? Большое спасибо вам за внимание, всем удачных каток и стабильного FPS!

Сглаживание в играх и другие настройки, как выжать максимум из видеокарты?

Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Поскольку среди моих читателей наверняка есть те, кто играет в компьютерные игры, я решил посвятить сегодняшнюю статью игровым настройкам, а конкретно сглаживанию и другим важным параметрам, в той или иной степени оказывающим влияние на производительность видеокарты. Поэтому сегодня мы с вами будем разбираться, как и какие настройки влияют на производительность видеокарты.

Во-первых важно понимать, как и из чего формируется изображение на экране, которое мы видим во время игры. Видеокарте нужно расставить объекты, натянуть текстуры, рассчитать освещение, положить тени, сгладить неровности, и при всем при этом, уложиться буквально в считанные доли секунды! И если какой-то этап занимает больше времени чем положено, появляется заметное глазу «торможение», или по-научному, проседание кадров в секунду. Вот, посмотрите сами:

Конечно, многое зависит от разрешения (Resolution) как такового. Простым изменением разрешения на одну ступень ниже можно добиться прироста производительности в 30-40%. Однако при этом, независимо от остальных настроек, картинка на экране будет выглядеть «замыленной». Поэтому самую «вкусную» картинку в игре можно получить, если разрешение соответствует максимальному разрешению (стандартному заводскому) монитора.

Качество и разрешение текстур (см. изображение выше) не так сильно влияют на производительность видеокарты, не так сильно, как качество объектов — потому что, чем больше деталей и объектов одновременно видеокарте нужно удерживать на экране, тем сложнее просчеты самих объектов и теней, которые они отбрасывают. Тени, в свою очередь, нагружают видеокарту весьма ощутимо, потому что объекты как правило движутся, меняется угол обзора, источник освещения, и чтобы тени выглядели мягко и реалистично, видеокарте нужно просчитывать много раз и усреднять итоговые значения.

Есть такая штука, как Ambient Occlusion (глобальное освещение), см. фото выше. Это технология, которая просчитывает как объекты отражают свет, который на них падает, и как близко расположены объекты, затеняя друг друга.

Это создает гораздо более реалистичную картинку с необходимыми затенениями в углах, но ОЧЕНЬ нагружает видеокарту. На сегодняшний день эта технология доступна в двух вариантах: чуть более простой SSAO (Screen Space Ambient Occlusion) и гораздо более продвинутый и прожорливый HBAO (Horizon-Based Ambient Occlusion).

Есть еще Анизотропная фильтрация (anisotropic filtering, AF) или фильтрация текстур. Она нужна для того, чтобы текстуры, которые находятся под углом или далеко от камеры не выглядели слишком мутными и на них не было никаких цветовых артефактов.

Чем выше значение — тем лучше результат фильтрации, однако сразу скажу — эти значения можно выкручивать сразу на «16x», т.е. на максимальное, и это никак не отразится на производительности даже самой бюджетной видеокарты.

Про сглаживание в играх

Сглаживание (anti aliasing). Что же такое сглаживание? Вы наверняка в играх довольно часто встречались с тем, что у объектов, которые должны в принципе выглядеть ровно и гладко, на краях появляются какие-то непонятные лесенки и зазубрины. Естественно, разработчики игр и видеокарт об этой проблеме знают, поэтому и появилась технология, которая называется «сглаживание», она и нужна чтобы эти неровности сгладить (что очевидно).

Существует довольно много методов осуществить сглаживание. Первый из них взаимодействует с изображением еще на уровне его построения. К первому методу относится: способ сглаживания SSAA (Supersample anti-aliasing) и MSAA (Multisample anti-aliasing), и еще между ними недавно затесался CSAA (Coverage Sampling Antialiasing) — последний, нечто среднее по производительности и по качеству.

Как все эти способы сглаживания работают? Они создают картинку в несколько раз большую, чем необходимо, а потом сжимают ее до размеров экрана, получается довольно неплохой результат, но нагрузка на видеокарту в этот момент просто нечеловеческая. Потому что в зависимости от того, что вы выберете в настройках игры (2x, 4x или 8x), соответственно и изображение будет в два, четыре или в восемь раз больше необходимого, получается, что и нагрузка в два, четыре или восемь раз больше.

Но, к счастью для нас, есть второй метод, который основан на так называемой пост-обработке, т.е. когда сглаживание применяется уже к сформированной сцене. К этому методу относятся уже 3 способа сглаживания: FXAA (Fast approXimate Anti-Aliasing) — по качеству сравним с четырех кратным MSAA сглаживанием, но при этом он не создает вообще никакой нагрузки на видеокарту, ну или настолько малую, что ее практически незаметно. Правда у FXAA есть один небольшой минус — при этом совсем слегка замыливаются текстуры. На глаз это почти незаметно.

Читать еще:  Чем открыть TIFF формат многостраничный

Но если вам это мыло прям режет глаза, для вас есть второй способ SMAA (Sub-pixel Morphological Anti-Aliasing), он дает чуть меньшее размытие, но и настолько же меньшее качество сглаживания, при том, что все так же не нагружает видеокарту. И наконец третий способ — TXAA (Temporal anti-aliasing, если я правильно понял, доступно только на видеокартах от Nvidia), он дает очень плавную, киношную картинку, но при этом ощутимо нагружает видеокарту. Если сравнить его с эталонным MSAA, то двукратный TXAA = восьмикратному MSAA, при этом нагрузка на видеокарту такая же, как при двукратном MSAA.

Ну а на этом здесь все, про остальные настройки графики в играх поговорим как-нибудь в другой раз. Я надеюсь, что эта статья поможет вам выбрать подходящие настройки в любой игре и выжать максимум производительности из вашей видеокарты.

Графические настройки в компьютерных играх — подробный разбор

На сайте PC Gamer появился интересный разбор графических настроек в компьютерных играх, где подробно рассказано обо всех популярных инструментах, фильтрах и механизмах обработки изображения. Мы перевели его на русский язык, чтобы вы могли сами настраивать свои игры, избавляться от лагов и любоваться красивой графикой.

Итак, сегодня мы с вами разберемся, что означают те или иные графические настройки в компьютерных играх.

У Nvidia и AMD есть программное обеспечение для автоматической настройки графики согласно техническим характеристикам вашего компьютера. Со своей задачей программы справляются неплохо, но часто ручная настройка приносит куда больше пользы. Все-таки, мы ПК-бояре, у нас должна быть свобода выбора!

Если вы новичок в области игровой графики, это руководство создано специально для вас. Мы расшифруем основные пункты любого меню «Настройки графики» в ваших играх и объясним, на что они влияют. Эта информация поможет вам избавиться от лагов и фризов в любимой игре, не лишаясь красивой картинки. А владельцы мощных компьютеров поймут, как настроить самую сочную и привлекательную графику, чтобы записывать крутые видео и делать зрелищные скриншоты.

Начнем с фундаментальных понятий, а затем пройдемся по тонким настройкам в рамках нескольких разделов, посвященных анизотропной фильтрации, сглаживанию и постобработке. Для написания этого гайда мы пользовались информацией, полученной от профессионалов: Алекса Остина, дизайнера и программиста Cryptic Sea, Николаса Вайнинга, технического директора и ведущего программиста Gaslamp Games и от представителей Nvidia. Сразу отметим, что статью мы пишем простыми словами, опуская подробные технические детали, чтобы вам было легче понять механизмы работы разных технологий.

Содержание

ОСНОВЫ

Разрешение

Пиксель — основная единица цифрового изображения. Это цветовая точка, а разрешение — количество столбцов и рядов точек на вашем мониторе. Самые распространенные разрешения на сегодня: 1280×720 (720p), 1920×1080 (1080p), 2560×1440 (1440p) и 3840 x 2160 (4K или «Ultra-HD»). Но это для дисплеев формата 16:9. Если у вас соотношение сторон 16:10, разрешения будут слегка отличаться: 1920×1200, 2560×1600 и т.д. У ультрашироких мониторов разрешение тоже другое: 2560×1080, 3440×1440 и т.д.

Кадры в секунду (frames per second, FPS)

Если представить, что игра — это анимационный ролик, то FPS будет числом изображений, показанных за секунду. Это не то же самое, что частота обновления дисплея, измеряемая в герцах. Но эти два параметра легко сравнивать, ведь как монитор на 60 Гц обновляется 60 раз за секунду, так и игра при 60 FPS выдает именно столько кадров за тот же отрезок времени.

Чем сильнее вы загрузите видеокарту обработкой красивых, наполненных деталями игровых сцен, тем ниже будет ваш FPS. Если частота кадров окажется низкой, они будут повторяться и получится эффект подтормаживания и подвисания. Киберспортсмены охотятся за максимальном возможными показателями FPS, особенно в шутерах. А обычные пользователи зачастую довольствуются играбельными показателями — это где-то 60 кадров в секунду. Однако, мониторы на 120-144 Гц становятся более доступными, поэтому потребность в FPS тоже растет. Нет смысла играть на 120 герцах, если система тянет всего 60-70 кадров.

Так как в большинстве игр нет встроенного бенчмарка, для измерения кадров в секунду используется стороннее программное обеспечение, например, ShadowPlay или FRAPS. Однако, некоторые новые игры с DX12 и Vulkan могут некорректно работать с этими программами, чего не наблюдалось со старыми играми на DX11.

Апскейлинг и даунсэмплинг

В некоторых играх есть настройка «разрешение рендеринга» или «rendering resolution» — этот параметр позволяет поддерживать постоянное разрешение экрана, при этом настраивая разрешение, при котором воспроизводится игра. Если разрешение рендеринга игры ниже разрешения экрана, оно будет увеличено до масштабов разрешения экрана (апскейлинг). При этом картинка получится ужасной, ведь она растянется в несколько раз. С другой стороны, если визуализировать игру с большим разрешением экрана (такая опция есть, например, в Shadow of Mordor), она будет выглядеть намного лучше, но производительность станет заметно ниже (даунсэмплинг).

Производительность

На производительность больше всего влияет разрешение, поскольку оно определяет количество обрабатываемых графическим процессором пикселей. Вот почему консольные игры с разрешением 1080p, часто используют апскейлинг, чтобы воспроизводить крутые спецэффекты, сохраняя плавную частоту кадров.

Мы использовали наш Large Pixel Collider (суперкомпьютер от сайта PC Gamer), включив две из четырех доступных видеокарт GTX Titan, чтобы продемонстрировать, как сильно разрешение влияет на производительность.

Тесты проводились в бенчмарке Shadow of Mordor:

1980х720 (½ родного разрешения)

2560х1440 (родное разрешение)

5120х2880 (x2 родного разрешения)

Вертикальная синхронизация и разрывы кадров

Когда цикл обновления дисплея не синхронизирован с циклом рендеринга игры, экран может обновляться в процессе переключения между готовыми кадрами. Получается эффект разрыва кадров, когда мы видим части двух или более кадров одновременно.

Одним из решений этой проблемы стала вертикальная синхронизация, которая почти всегда присутствует в настройках графики. Она не позволяет игре показывать кадр, пока дисплей не завершит цикл обновления. Это вызывает другую проблему — задержка вывода кадров, когда игра способна показать большее количество FPS, но ограничена герцовкой монитора (например, вы могли бы иметь 80 или даже 100 кадров, но монитор позволит показывать только 60).

Адаптивная вертикальная синхронизация

Бывает и так, что частота кадров игры падает ниже частоты обновления монитора. Если частота кадров игры превышена, вертикальная синхронизация привязывает ее к частоте обновления монитора и она, например, на дисплее с 60 Гц не превысит 60 кадров. А вот когда частота кадров падает ниже частоты обновления монитора, вертикальная синхронизация привязывает ее к другому синхронизированному значению, например, 30 FPS. Если частота кадров постоянно колеблется выше и ниже частоты обновления, появляются подтормаживания.

Чтобы решить эту проблему, адаптивная вертикальная синхронизация от Nvidia отключает синхронизацию каждый раз, когда частота кадров падает ниже частоты обновления. Эту функцию можно включить в панели управления Nvidia — она обязательна для тех, кто постоянно включает вертикальную синхронизацию.

Технологии G-sync и FreeSync

Новые технологии помогают разобраться со многими проблемами, которые зачастую основаны на том, что у дисплеев фиксированная частота обновления. Но если частоту дисплея можно было бы изменять в зависимости от FPS, пропали бы разрывы кадров и подтормаживания. Такие технологии уже есть, но для них нужны совместимые видеокарта и дисплей. У Nvidia есть технология G-sync, а у AMD — FreeSync. Если ваш монитор поддерживает одну из них и она подходит к установленной видеокарте, проблемы решены.

Сглаживание (Anti-aliasing, антиалиасинг)

Инструментов для этого достаточно, но легче объяснить на примере суперсэмплинга (SSAA). Эта технология отрисовывает кадры с более высоким разрешением, чем у экрана, а затем сжимает их обратно до его размера. На предыдущей странице вы могли видеть эффект от сглаживания при уменьшении частоты в Shadow of Mordor с 5120х2880 до 1440p.

Взгляните на пиксель черепичной крыши. Он оранжевого цвета. Тут же и пиксель голубоватого неба. Находясь рядом, они создают жесткий зубчатый переход от крыши к небу. Но если визуализировать сцену с четырехкратным разрешением, вместо одного пикселя оранжевой крыши на этом же месте будут четыре пикселя. Некоторые из них будут оранжевыми, некоторые «небесными». Стоит взять значение всех четырех пикселей, как получится нечто среднее — если по такому принципу построить всю сцену, переходы станут мягче и «эффект лестницы» пропадет.

Такова суть технологии. Но, она требует от системы очень много ресурсов. Ей приходится отрисовывать каждый кадр с разрешением в два или более раз больше, чем оригинальное разрешение экрана. Даже в случае с нашими топовыми видеокартами суперсэмплинг с разрешением 2560х1440 кажется нецелесообразным. К счастью, есть альтернативы:

Мультисэмплинг (MSAA): Эффективнее суперсэмплинга, но все еще прожорлив. В старых играх он был стандартом, а его суть объясняется в видео, которое вы увидите ниже.

Усовершенствованный мультисэмплинг (CSAA): более эффективная версия MSAA от Nvidia для ее видеокарт.

Усовершенствованный мультисэмплинг (CFAA): тоже апгрейд MSAA, только от компании AMD для ее карточек.

Метод быстрого приближения (FXAA): вместо анализа каждого отдельного пикселя, FXAA накладывается в качестве фильтра постобработки на всю сцену целиком после ее рендеринга. FXAA также захватывает места, которые пропускаются при включении MSAA. Хотя сам метод быстрого приближения тоже пропускает много неровностей.

Морфологический метод (MLAA): он свойственен видеокартам AMD и тоже пропускает этап рендеринга. MLAA обрабатывает кадр, выискивая алиасинг и сглаживая его. Как нам объяснил Николас Вайнинг: «Морфологическое сглаживание работает с морфологией (паттернами) неровностей на краях моделей; оно вычисляет оптимальный способ удаления лесенок для каждого вида неровностей путем разбиения краев и зубцов на небольшие наборы морфологических операторов. А затем использует специальные типы смешивания для каждого отдельного набора». Включить MLAA можно в панели управления Catalyst.

Улучшенное субпиксельное морфологическое сглаживание (SMAA): еще один вид постобработки, в котором сочетаются детали MLAA, MSAA и SSAA. Такой метод можно совмещать со SweetFX, а многие современные игры поддерживают его изначально.

Временное сглаживание (TAA или TXAA): TXAA изначально разрабатывалась для графических процессоров Nvidia уровня Kepler и более поздних. Но затем появились не настолько специфические формы временного сглаживания, которые обычно обозначаются, как TAA. При таком способе следующий кадр сравнивается с предыдущим, после чего обнаруживаются и устраняются неровности. Происходит это при поддержке разных фильтров, которые уменьшают «ползающую лесенку» в движении.

Николас Вайнинг объясняет: «Идея TAA заключается в ожидании того, что два идущих друг за другом кадра будут очень похожи, ведь пользователь в игре двигается не настолько быстро. Поэтому раз объекты на экране переместились несильно, мы можем получить данные из предыдущего кадра, чтобы дополнить участки, нуждающиеся в сглаживании».

Многокадровое сглаживание (MFAA): появилось с релизом графических процессоров Maxwell от Nvidia. Тогда как MSAA работает с устойчивыми шаблонами, MFAA позволяет их программировать. Представители Nvidia подробно объясняют технологию в видео ниже (о нем мы уже говорили раньше и очень скоро вы его увидите).

Суперсэмплинг с глубоким обучением (DLSS): новейшая технология Nvidia, доступная лишь в некоторых играх и с видеокартами GeForce RTX. По словам компании: «DLSS использует нейронную сеть для определения многомерных особенностей визуализированной сцены и интеллектуального объединения деталей из нескольких кадров для создания высококачественного финального изображения. DLSS использует меньше сэмплов, чем TAA, при этом избегая алгоритмических трудностей с прозрачностями и другими сложными элементами сцен».

Другими словами, DLSS справляется с задачей лучше и эффективнее, чем TAA, но технологию нужно отдельно готовить к каждой игре. Если не обучить ее должным образом, многие места окажутся размытыми.

Что означают цифры?

В настройках сглаживания вы часто видите значения: 2x, 4x, 8x и т.д. Эти цифры рассказывают о количестве используемых образцов цвета и, как правило, чем больше число, тем точнее будет сглаживание (при этом оно потребует больше системных ресурсов).

Но есть исключения. Так, CSAA пытается достичь сглаживания на уровне MSAA с меньшим количеством образцов цвета. Поэтому 8xCSAA фактически использует только четыре образца цвета. Есть и 8QxCSAA — этот способ сглаживания увеличивает количество образцов цвета до восьми, чтобы повысить точность.

Производительность

Мы использовали бенчмарк Batman: Arkham City, чтобы протестировать несколько старых методов сглаживания: MSAA, FXAA и TXAA. Результаты, как и ожидалось, показывают, что FXAA требует меньше всего ресурсов, в то время как MSAA и TXAA сильно влияют на среднюю частоту кадров.

Результаты тестирования сглаживания в Batman: Arkham City (на двух Nvidia GTX Titan SLI):

Настройки в играх: с чувством, с толком, с расстановкой

В связи с многократными вопросами и спорами, связанными с FPS в тестах для видеокарт, представленными на нашем сайте, мы решили более детально остановиться на этом вопросе и рассказать вам про настройки игр.

Все знают, что в современных играх достаточно настроек графики для улучшения качества картинки или повышения производительности в самой игре. Рассмотрим основные настройки, которые присутствуют практически во всех играх.

Разрешение экрана

Пожалуй, этот параметр является одним из главных, влияющих как на качество картинки, так и на производительность игры. Данный параметр зависит исключительно от матрицы ноутбука, и поддержки данного разрешения игрой (от 640х480 до 1920х1080). Тут все просто и пропорционально, чем больше разрешение, тем четче картинка и больше нагрузка на систему, и, соответственно, наоборот.

Читать еще:  Antimalware service executable что это Windows 8

Качество графики

Практически в каждой игре есть свои стандартные настройки графики, которые вы можете использовать. Обычно это «низкие»», «средние», «высокие» и в некоторых играх присутствует графа «ультра». В эти установки уже изначально заложен набор настроек (качество текстур, сглаживание, анизотропная фильтрация, тени… и многие другие) и пользователь может выбрать профиль, который лучше всего подходит под его конфигурацию ПК. Думаю тут все понятно, чем лучше настройка графики, тем реалистичнее смотрится игра, и, конечно же, возрастают требования к устройству. Ниже вы можете посмотреть видео, и сравнить качество картинки во всех профилях.

Качество текстур

Данная настройка отвечает за разрешение текстур в игре. Чем выше разрешение текстур, тем более четкую и детализированную картинку вы видите, соответственно и нагрузка на GPU будет больше.

Качество теней

Эта настройка регулирует детализацию теней. В некоторых играх тени можно вообще отключить, что даст существенный прирост производительности, но картинка не будет такой насыщенной. На высоких настройках тени будут более реалистичные и мягкие.

Качество эффектов

Данный параметр влияет на качество и интенсивность эффектов, таких как дым, взрывы, выстрелы, пыль и многие другие. В разных играх данная настройка влияет по-разному, в некоторых разницу между низкими и высокими настройками очень тяжело заметить, а в некоторых отличия очевидны. Влияние данного параметра на производительность зависит от оптимизации эффектов в игре.

Качество окружающей среды

Параметр, отвечающий за геометрическую сложность каркасов в объектах окружающего игрового мира, а также их детализацию (особенно заметна разница на дальних объектах). На низких настройках возможны потери детализации объектов (домов, деревьев, машин и т.д.). Удаленные объекты становятся практически плоским, округлые формы получаются не совсем круглыми, при этом практически каждый объект лишается каких-то мелких деталей.

Покрытие ландшафта

В некоторых играх указывается как «Плотность травы» либо носит другие подобные названия. Отвечает за количество травы, кустов, веток, камней и прочего мусора находящегося на земле. Соответственно чем выше параметр, тем более насыщенной разными объектами выглядит земля.

Анизотропная фильтрация

Когда текстура отображается не в своем исходном размере, в нее вставляются дополнительные или убираются лишние пиксели. Для этого и применяется фильтрация. Существует три вида фильтраций: билинейная, трилинейная и анизотропная. Самой простой и наименее требовательной является билинейная фильтрация, но и результат от нее наихудший. Трилинейная фильтрация тоже не даст вам хороших результатов, хоть она и добавляет четкости, но также генерирует артефакты.

Самой лучшей фильтрацией является анизотропная, которая заметно устраняет искажения на текстурах сильно наклоненных относительно камеры. Для современных видеокарт, данный параметр практически не влияет на производительность, но существенно улучшает четкость и естественный вид текстуры.

Сглаживание

Принцип работы сглаживания таков: до вывода картинки на экран она рассчитывается не в родном разрешение, а в двукратном увеличении. Во время вывода картинка уменьшается до нужных размеров, причем неровности по краям объекта становятся менее заметными. Чем больше исходное изображение и коэффициент сглаживания (x2, x4, x8, x16), тем меньше неровностей будет заметно на объектах. Собственно само сглаживание нужно для того чтобы максимально избавится от «лестничного эффекта» (зубцов по краям текстуры).

Существуют разные виды сглаживания, чаще всего в играх встречаются FSAA и MSAA. Полноэкранное сглаживание (FSAA) используется для устранения «зубцов» на полноэкранных изображениях. Минус данного сглаживания заключается в обработке всей картинки целиком, что конечно значительно улучшает качество изображения, но требует большой вычислительной мощности графического процессора.

Multisample anti-aliasing (MSAA), в отличие от FSAA, сглаживает только края объектов, что приводит к небольшому ухудшению графики, но при этом экономит огромную часть вычислительной мощи. Так что если вы не обладаете топовой игровой видеокартой, лучше всего использовать MSAA.

SSAO (Screen Space Ambient Occlusion)

В переводе на русский означает «преграждение окружающего света в экранном пространстве». Является имитацией глобального освещения. Увеличивает реалистичность картинки, создавая более «живое» освещение. Дает нагрузку только на GPU. Данная опция значительно уменьшает количество FPS на слабых графических адаптерах.

Размытие в движение

Также известно как Motion Blur. Это эффект, смазывающий изображение при быстром передвижении камеры. Придает сцене больше динамики и скорости (часто используется в гонках). Увеличивает нагрузку на GPU, тем самым уменьшает количество FPS.

Глубина резкости (Depth of field)

Эффект для создания иллюзии присутствия за счет размытия объектов в зависимости от их положения относительно фокуса. Например, разговаривая с определенным персонажем в игре, вы видите его четко, а задний фон размыто. Такой же эффект можно наблюдать если сконцентрировать взгляд на предмете расположенном вблизи, более дальние объекты будут размыты.

Вертикальная синхронизация (V-Sync)

Синхронизирует частоту кадров в игре с частотой вертикальной развертки монитора. При включенной V-Sync, максимальное количество FPS равно частоте обновления монитора. Если же количество кадров в игре у вас ниже, чем частота развертки монитора, стоит включить тройную буферизацию, при которой кадры подготавливаются заранее, и хранятся в трех раздельных буферах. Преимущество вертикальной синхронизации состоит в том, что она позволяет избавиться от нежелательных рывков, при резких скачках FPS.

Не обошлось и без недостатков, например в новых требовательных играх возможно сильное падение производительности. Также в динамических шутерах или онлайн играх, V-Sync может только навредить.

Заключение

Выше изложены основные, но далеко не все настройки в играх. Стоит напомнить, что каждая игра имеет свой уровень оптимизации, и свой ряд настроек. В некоторых случаях игры с лучшей графикой будут идти на вашем ноутбуке быстрее, чем неоптимизированные игры с более низкими требованиями. Большинство игр позволяет использовать как уже готовые настройки, так и задавать вручную каждый отдельно взятый параметр. Часть из рассмотренных выше эффектов поддерживается только в новых DirectX 11 играх, а в более старых с поддержкой DirectX 9 их просто нет.

Желаем вам приятного времяпровождения и незабываемых ощущений в играх.

Настройки графики в Red Dead Redemption 2 и их влияние на производительность — как оптимизировать игру и увеличить FPS

Несмотря на то, что Rockstar Games вложила много усилий по созданию ПК-версии Red Dead Redemption 2 (о чём, как минимум, говорит наличие огромного количество настроек графики), на текущий момент игра работает мягко скажем не очень. Из-за этого у многих возникают вьетнамские флешбэки времён Grand Theft Auto 4.

Однако если вам удастся правильно сбалансировать производительность и визуальное качество, то Red Dead Redemption 2 будет усладой для ваших глаз. Именно поэтому портал Game Debate протестировал все самые важные графические опции на предмет того, насколько сильно они влияют на частоту кадров. Всего же в игре более 40 различных настроек, поэтому в будущем от них стоит ожидать обновление материала.

Game Debate проводила тестирование на компьютере с процессором Intel Core i7-5820K 3.3 ГГц, видеокартой GeForce GTX 1070 MSI Gaming X 8GB и 16Гб оперативной памяти типа DDR4.

График влияния настроек на производительность

Перед вами график того, как различные настройки влияют на производительность. Чем больше полоса уходит вправо, тем более требовательной становится тот или иной параметр при переключении с «Низких» на «Ультра», или любой другой эквивалент, используемый для конкретной графической опции.

Также стоит отметить, что Game Debate выставила оценку каждому из тестированных параметру в двух категориях: влияние на производительность и приоритет. Последний будет сообщать о том, стоит ли вам повышать тот или иной параметр (чем выше число, тем лучше).

Тройная буферизация (Triple Buffering)

Этот параметр может слегка улучшить стабильность изображения (меньше артефактов), в некоторых случаях уменьшая время загрузки картинки, при этом жертвуя некоторым объёмом VRAM (количество памяти у видеокарты). Поэтому если у вас имеется немного свободного VRAM, то можете без особых проблем включать «Тройную буферизацию», так как её влияние на производительность несущественное.

Влияние на производительность — 1/5

Качество текстур (Texture Quality)

Влияет на разрешение текстур. Параметр очень сильно зависит от количества VRAM у вашей видеокарты. Если объём памяти достаточно высокий, то «Качество текстур» на частоту кадров будет либо влиять очень слабо, либо вообще никак. Если же памяти недостаточно, то производительность будет хуже до тех пор, пока не снизится параметр до оптимального уровня.

«Качество текстур» делает игру значительно красивее, поэтому рекомендуется не жертвовать этой опцией. И если этот параметр будет стоять на низких, то Red Dead Redemption 2 будет выглядеть весьма дёшево.

Как только измените этот параметр, игра потребует перезагрузки.

Ниже будут представлены скриншоты того, как выглядит игра с низкими и ультра-текстурами. Также стоит отметить, что для большего контраста все остальные настройки графики были установлены на низкие или вовсе отключены.

Влияние на производительность — 3/5

Анизотропная фильтрация (Anisotropic Filtering)

Фильтрация текстур (или анизотропная фильтрация) улучшает качество изображения текстур, если смотреть на них под углами, тем самым уменьшая размытие и сохраняя их детализацию.

Влияние на производительность — 2/5

Качество освещения (Lighting Quality)

Качество источников освещения заметно улучшается, если вы установите значение на ультра. Влияет на то, как свет от солнца, луны и других, более локализованных источников света, освещает окружение.

Портал рекомендует попробовать поставить значение этого параметра повыше, однако «Качество освещения» не является самой приоритетной настройкой.

На графике в самом начале материала показано то, как этот параметр влияет на производительность, когда вы исследуете мир Red Dead Redemption 2 на открытых пространствах в дневное время суток. А вот ночью прожорливость «Качества освещения» значительно возрастает.

Влияние на производительность — 3/5

Качество глобального освещения (Global Illumination Quality)

В игре «Качество глобального освещения» улучшает сияние света от источников света. Это ещё один слой освещения, улучшающий «Качество освещения».

Этот параметр очень хорошо работает в связке всё с тем же «Качеством освещения». И к счастью, на производительность эта графическая опция оказывает минимальное влияние.

На скриншотах ниже все настройки, за исключением двух, установлены на низкие или отключены. Портал поставил «Качество освещения» на ультра и «Качество глобального освещения» на низкие и ультра.

Влияние на производительность — 1/5

Качество теней (Shadow Quality)

Эта опция влияет на разрешение рендеринга теней, отбрасываемых объектами. Чем выше установлен параметр, тем более детализированными будут тени и их разрешение соответственно. «Качество теней» — это один из ключевых параметров, который усиливает реалистичность внешнего вида игры, но при этом немного жертвует производительностью.

Влияние на производительность — 3/5

Качество далёких теней (Far Shadow Quality)

Эта опция очень похожа на предыдущий параметр, только на этот раз влияет на удалённые объекты. «Качество далёких теней» не настолько важно, но если есть возможность, то можете повысить эту настройку.

Влияние на производительность — 2/5

Затенение SSAO (Screen Space Ambient Occlusion)

Ещё один параметр, влияющий на освещение и тени. «Затенение SSAO» добавляет больше глубины объектам путём наслоения на них теней.

Эта графическая опция идёт в комплекте с небольшой потерей частоты кадров, и лучше всего работает, если «Качество освещения» стоит достаточно высоко, особенно если вы также можете позволить себе установить «Качество глобального освещения» на ультра.

Установка «Затенения SSAO» достаточно высоко, конечно, улучшит картинку, однако делать это необязательно, если вы хотите отыскать парочку лишних кадров в секунду.

Влияние на производительность — 3/5

Качество отражений (Reflection Quality)

А вот эта опция для Game Debate оказалось загадкой. Если установить «Качество отражений» на ультра, то производительность падает очень сильно. При этом за пожертвование такого количества FPS видимых улучшений в графике вы не получаете. Портал обещает в ближайшее время более детально изучить этот параметр.

Влияние на производительность — 5/5

Качество зеркал (Mirror Quality)

Если вам нравится любоваться своим ликом в зеркалах и хотите, чтобы изображение было чётким, тоже можете установить «Качество зеркал» на ультра. Однако учитывая специфику игры, часто этим вы заниматься точно не будете. Так что этот параметр не является проблемой для производительности. И даже если вы окажетесь в месте, где вокруг вас будут зеркала, то к значительной потере кадров это не приведёт.

Влияние на производительность — 0/5

Качество воды (Water Quality)

«Качество воды» влияет сразу на три другие настройки: «Качество преломления воды» (Water Refraction Quality), «Качество отражения воды» (Water Reflection Quality) и «Качество физики воды» (Water Physics Quality). Этот параметр на ультра становится очень требовательным, когда вы находитесь рядом с озером или любой другой водной поверхностью. Поэтому если ищите лишнее количество кадров в секунду, то обязательно снизьте эту опцию.

Больше всего на производительность влияет «Качество физики воды». И если вы вдруг заметите потерю кадров в секунду рядом с водой, то попробуйте понизить только этот параметр в расширенных настройках графики.

Хоть эта опция и делает игру красивее, лучше всего поиграйтесь с настройками до тех пор, пока ваш компьютер сможет справиться с ней.

Влияние на производительность — 5/5

Качество объёмных эффектов (Volumetrics Quality)

«Качество объёмных эффектов» тоже влияет сразу на три параметра: «Разрешение ближних объёмных эффектов» (Near Volumetric Resolution), «Разрешение дальних объёмных эффектов» (Far Volumetric Resolution) и «Качество освещения объёмных эффектов» (Volumetric Light Quality).

Читать еще:  Формат BIN чем открыть на андроиде

Из всех них самый требовательный — это «Разрешение ближних объёмных эффектов». Так что откройте расширенные настройки и понизьте этот параметр, в то время как остальные два повысьте.

«Разрешение ближних объёмных эффектов» в принципе является одним из самых прожорливых параметров в игре. Его установка на ультра не делает графику заметно лучше, поэтому смело снижайте эту настройку для увеличения производительности.

Влияние на производительность — 5/5

Качество частиц (Particle Quality)

Влияет на количество и качество частиц. Особенно заметно на тлеющих углях и искрах от пламени, а также дыма, поднимающегося от костров. «Качество частиц» влияет и на выпадение снега. В целом установка значения на низкие не испортит качество картинки.

Но поскольку параметр практически не влияет на производительность, то можете установить его на ультра.

Как только измените этот параметр, игра потребует перезагрузки.

Влияние на производительность — 1/5

Качество тесселяции (Tessellation Quality)

Если у вас есть возможность пожертвовать некоторым количеством FPS, то установите «Качество тесселяции» достаточно высоко. Так рендеринг таких текстур, как грязь, грязные лужи, снег и следы будет значительно улучшен.

Влияние на производительность — 2/5

Этот тип сглаживания стоит по умолчанию в Red Dead Redemption 2. TAA — это временное сглаживание. Оно использует предыдущие кадры для помощи в улучшении качества изображения. Несмотря на то, что TAA действительно влияет на производительность, рекомендуется использовать либо его, либо FXAA.

Вы можете установить временное сглаживание на средние, поскольку оно действительно может помочь избавиться от неприятных глазу неровностей вокруг краёв объектов.

Но лучше всего использовать именно FXAA, так как оно меньше всего жрёт FPS.

Влияние на производительность — 4/5

FXAA — это быстрое приближённое сглаживание, которое тоже снижает количество лесенок на объектах. Его вы можете включить в паре с TAA, если того пожелаете.

FXAA не такой прожорливый, как TAA, поэтому для повышения частоты кадров в секунду лучше всего используйте его.

Влияние на производительность — 2/5

MSAA обеспечивает наилучшее качество изображения из всех трёх вариантов сглаживания в Red Dead Redemption 2, но при этом идёт в комплекте с огромной потерей производительности. Грубо говоря, оно создаёт увеличенное изображение, а затем уменьшает его обратно, подстраивая под размер вашего монитора, тем самым сглаживая всё вокруг.

MSAA используйте только в том случае, если вы обладаете по-настоящему мощной видеокартой. В противном случае, как уже не раз говорилось, FXAA ваш лучший друг.

Влияние на производительность — 5/5

Разрешение ближних объёмных эффектов (Near Volumetric Resolution)

В игре этот параметр повышает качество рендеринга тумана и облаков. Если эта опция включена, то уровень погружения значительно улучшается, ровно как и атмосфера всего происходящего. Однако как уже говорилось ранее, «Разрешение ближних объёмных эффектов» очень прожорливо, поэтому если вы испытываете нехватку FPS, то понизьте эту опцию.

Влияние на производительность — 5/5

Разрешение дальних объёмных эффектов (Far Volumetric Resolution)

Облака и туман на расстоянии находятся под контролем «Разрешения дальних объёмных эффектов». И хотя у этого параметра такая же задача, как и у «Разрешения ближних объёмных эффектов», в этом случае влияние на производительность минимальное. Поэтому вы вполне спокойно можете включить эту опцию на максимум, а потом благополучно забыть про неё.

Влияние на производительность — 0/5

Качество освещения объёмных эффектов (Volumetric Lighting Quality)

Чаще всего хорошо работает в паре с «Разрешением ближних объёмных эффектов», делая картинку в Red Dead Redemption 2 более атмосферной и кинематографичной. Да, производительность падает, однако не наносит такой же ущерб как, например, тот же MSAA.

Если у вас есть возможность включить «Качество освещения объёмных эффектов» вместе с «Разрешением ближних объёмных эффектов», то вы получите очень красивую картинку. Но если испытываете проблемы с FPS, то либо понизьте параметр, либо вовсе отключите, особенно если вы уже отключили «Разрешение ближних объёмных эффектов».

Screen space ambient occlusion с учетом нормалей и расчет одного отражения света.

В этой статье я расскажу, как я с нуля делал SSAO (Screen Space Ambient Occlusion — расчёт фонового освещения в экранном пространстве) с учетом нормалей. Сразу следует отметить, что это наиболее простая и прямолинейная реализация «в лоб», не претендующая на оптимальность или новизну. Статья будет полезна в первую очередь тем, кто имеет желание разобраться, как это работает.

Как-то захотелось мне поупражняться с графикой, и я решил сделать SSAO с нуля, опираясь на мои опыты с трассировкой лучей и на полученные ранее знания о том, как в целом это должно работать. В общем, поставил задачу написать к своему движку демку, с использованием всяких разных технологий. Решено было также поизучать deferred shading и screen-space local reflections, но об этом как-нибудь в другой раз. В этой статье сконцентрируюсь на SSAO.

Для самых нетерпеливых, вот результат:

1. Немного теории

Что нам говорит Википедия, по поводу ambient occlusion:

Получается, что нам нужно рассчитать, сколько света доходит до конкретной точки из полусферы, ориентированной по нормали в этой точке. Я даже как смог нарисовал в фотошопе картинку:

Что мы тут видим:

Сверху расположена камера, которая смотрит на нашу сцену.

Разными цветами показаны точки на объекте, их нормали и полусферы, по которым мы будем собирать затенение.

Точка, обозначенная фиолеовым ничем не затенена.

Точка, обозначенная желтым — затенена совсем чуть-чуть.

Точка, обозначенная голубым — затенена практически наполовину.

А вот точка на заднем объекте, обозначенная оранжевым, по идее, с точки зрения камеры частично перекрыта передним объектом, но так как она находится относительно далеко от объекта, то по факту передний объект эту точку не затеняет. С этим нам придется бороться отдельно, чтобы избежать неприятных артефактов в виде темных силуэтов объектов.

Таким образом, нам нужно рассчитать затенение для каждой точки, учитывая расстояние до объекта, который её перекрывает. Это и будет наш ambient occlusion.

Я решил в отличие от «традиционного» SSAO (например того, который, если я правильно помню, использоваться в первом Crysis) рассчитывать это не в screen space, а во view space. Минус этого подхода в большей сложности вычислений (хотя тоже, надо смотреть, проверять и сравнивать), плюс — в более точном AO.

2. Подготовка

Итак, для расчета ambient occlusion нам понадобятся две текстуры: глубины и нормалей.

Как я уже сказал, нормали будут во view space. Как сохранять и восстанавливать нормали — ваше дело, я, например, использую хитрую функцию, которая записывает нормаль в две компонеты. Подробнее об этом в последнем разделе «Ништяки». Пока, пускай у нас будут две функции в шейдере:

Выглядеть текстура с нормалями будет примерно вот так:

Текстура с глубиной у нас будет хранить «стандартную» глубину OpenGL.

Значения глубины, приведенные к интервалу [-1..1] и возведенные в 64-ю степень, у меня выглядят как-то так:

Но, так как мы будем использовать view space нам нужно будет восстанавливать положение точки во view space по глубине. О том, как это сделать смотрите в последнем разделе «Ништяки». Пока, пускай у нас будут четыре функции в шейдере:

Также, для того, чтобы придать разнообразия нашему расчету AO, нам понадобится текстура с шумом. Самая обычная текстура с шумом, я даже показывать её здесь не буду. В дополнение к этой текстуре нам специально для неё нужны будут текстурные координаты. Такие, чтобы текстура рисовалась на экране тексель в пиксель. По большому счету, это не обязательно, но очень желательно, чтобы выборки были «более случайными».

Итого, на входе во фрагментный шейдер у нас есть три текстуры и два набора текстурных координат.

Надо заметить, что в моем движке для того, чтобы поддерживались разные версии шейдеров, сделаны следующие штуки:
Входящая переменная во фрагментный шейдер — etFragmentIn. В старых шейдерах заменяется на varying, в новых на in.
Результат фрагментного шейдера записывается в переменную etFragmentOut (gl_FragColor в старых шейдерах и «out vec4 . » + glBindFragDataLocation в новых версиях).

Итого, кусочек шейдера у нас уже есть:

Теперь можно приступить непосредственно к расчету нашего затенения.

3. Расчет SSAO

Общая идея такова: в данной точке получить положение и нормаль, затем сгенерировать несколько случайных направлений на полусфере, заданой нормалью, и проверить затенения в них. Результат собрать и поделить на количество выборок. Таким образом мы хотим контролировать как минимум три параметрa:
1) количество выборок;
2) минимальное расстояние, на котором мы проверяем затенение (оно нужно нам, чтобы избавиться от некоторых неприятных артефактов);
3) максимальное расстояние, на котором мы проверяем затенение;

Вот пару картинок для сравнения параметров: количество выборок — чем больше, тем более плавное и красивое затенение у нас получается:

Максимальное расстояние — чем оно больше, тем «шире» и мягче у нас затенение:

Для тестовой сцены (Crytek Sponza) я использовал такие параметры:

К сожалению, мне пока не пришло в голову, как можно избавиться от этих параметров и вычислять их, исходя из того, что у нас есть на экране. Буду рад, если кто-то подскажет, куда двигаться в этом направлении.

Итак, у нас все есть для того, чтобы рассчитать затенение каждой точки на экране. Для начала нам нужно найти нормаль в этой точке и её положение (не забывайте, что мы работает во view space). Делается это просто чтением нормали из текстуры и восстановлением положения по глубине:

Теперь, чтобы не городить все в теле функции main(), заведем специальную функцию, которая рассчитывает затенение в данной точке. Я пафосно назвал её performRaytracingInViewSpace:

Ну, и собственно, чтобы не томить, остаток шейдера:

В результате у нас будет затенение данной точки. Если нужно освещение, мы просто вычитаем затенение из единицы:

То есть здесь мы просто подсовываем в эту функцию начальные параметры для текущей точки и некую псевдослучайную величину, которую мы потом обновляем (читаем из текстуры шума по новым координатам).

Таким образом, весь секрет у нас в функции расчета затенения. Давайте рассмотрим её поближе.

Здесь нам нужно сгенерировать случайное направление на полусфере, заданой нормалью в точке. Я это делаю очень просто: нормализую значение из текстуры шума, и если оно лежит в другой полуплоскости от нужной нам нормали, то умножаю на –1. Выглядит это вот так:

Так как нам нужна вся полусфера, и у нас нет какого-то предпочитаемого направления, то эта функция очень даже подходит. Если нужно делать выборки в некоем конусе — в движке есть функция для этого (могу показать, если сами не найдете).

Теперь у нас есть случайное направление, по которому мы будем делать выборку. Мы сдвигаем точку в этом направлении на случайную величину между MIN_SAMPLE_SIZE и SAMPLE_SIZE и проецируем её в screen space. После чего получаем некие новые текстурные координаты и глубину в интервале [0..1].

Далее, мы смотрим, какая глубина у нас находится по новым текстурным координатам, делаем новую выборку из текстуры глубины. Затем проверяем: если новая глубина оказалась больше, чем та, которую мы получили после проецирования, значит новая точка лежит дальше нашей и перекрывать её не может, перекрытия нет — возвращаем ноль из функции:

А дальше, когда мы определили, что новая точка лежит ближе к камере, чем наша спроецированная, начинается магия затенения. Что у нас есть на входе:
— глубина нашей спроецированной точки (которая гарантировано больше, чем новая глубина);
— глубина, которую мы получили после выборки (которая гарантирована меньше, чем глубина спроецированной точки).

Что нам нужно вычислить:
— насколько сильно объект (на точку которого мы наткнулись) перекрывает нашу исходную точку.

Что нам нужно учесть:
— чем ближе новая точка к спроецированной, тем сильнее перекрытие;
— если новая точка сильно «далеко» от спроецированной, тем меньше перекрытие.

Итого: нам надо сравнить две нелинейных глубины, которые, скорее всего, близки к единице. Можно еще раз восстановить линейную глубину, а можно сделать небольшой хак и получить значение, которое характеризует глубину. После некоторых экспериментов, я пришел к выводу, что функция вида
лучше всего подходит для получения такой оценки.

Итого, у нас есть два значения оценки глубины, возьмем между ними разницу, которая будет характеризовать расстояние одной точки от другой:

Так как мы хотим контролировать степень затенения, можем ввести некий коэффециент для этой разности. В финальном варианте получается так:

Для тестовой модели я использовал значение DEPTH_DIFFERENCE_SCALE равным 3.33333. Все зависит от масштабов того, что мы рисуем и на чём хотим вычислять затенение.

Теперь у нас есть расстояние между точками, давайте вычислим степень затенения. Опять таки, после многочисленных экспериментов, я пришел к выводу, что лучше всего описывает затенение функция вида:

Чтобы сделать его более мягким и приятным, еще можно учитывать расстояние, на которое мы делали выборку (приведенное к промежутку [0..1]). Итоговая формула выглядит вот так:

Вот как влияет масштаб расстояний (тот, который DEPTH_DIFFERENCE_SCALE)

При уменьшении расстояние (при DEPTH_DIFFERENCE_SCALE 17 января 2015 (Обновление: 13 мар. 2015)

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector