7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что значит импульсный блок питания

Что такое импульсный блок питания и чем он отличается от обычного аналогового

Во многих электрических приборах уже давно применяется принцип реализации вторичной мощности за счет использования дополнительных устройств, на которые возложены функции обеспечения электроэнергией схем, нуждающихся в питании от отдельных типов напряжений, частоты, тока…

Для этого создаются дополнительные элементы: блоки питания, преобразующие напряжение одного вида в другой. Они могут быть:

встроены внутрь корпуса потребителя, как на многих микропроцессорных приборах;

или изготовлены отдельными модулями с соединительными проводами по образцу обычного зарядного устройства у мобильного телефона.

В современной электротехнике успешно уживаются два принципа преобразования энергии для электрических потребителей, основанные на:

1. использовании аналоговых трансформаторных устройств для передачи мощности во вторичную схему;

2. импульсных блоках питания.

Они имеют принципиальные отличия в своей конструкции, работают по разным технологиям.

Трансформаторные блоки питания

Первоначально создавались только такие конструкции. Они изменяют структуру напряжения за счет работы силового трансформатора, питающегося от бытовой сети 220 вольт, в котором происходит понижение амплитуды синусоидальной гармоники, направляемой далее на выпрямительное устройство, состоящее из силовых диодов, включенных, как правило, по схеме моста.

После этого пульсирующее напряжение сглаживается параллельно подключенной емкостью, подобранной по величине допустимой мощности, и стабилизируется полупроводниковой схемой с силовыми транзисторами.

За счет изменения положения подстроечных резисторов в схеме стабилизации удается регулировать величину напряжения на выходных клеммах.

Импульсные блоки питания (ИБП)

Подобные конструктивные разработки массово появились несколько десятилетий назад и стали пользоваться все большей популярностью в электротехнических приборах благодаря:

доступностью комплектования распространенной элементной базой;

надежностью в исполнении;

возможностями расширения рабочего диапазона выходных напряжений.

Практически все источники импульсного питания незначительно отличаются по конструкции и работают по одной, типичной для других устройств схеме.

В состав основных деталей источников питания входят:

сетевой выпрямитель, собранный из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, сетевого предохранителя и диодного моста;

накопительная фильтрующая емкость;

ключевой силовой транзистор;

схема обратной связи, выполненная на транзисторах;

импульсный источник питания, со вторичной обмотки которого исходит напряжение для преобразования в силовую цепь;

выпрямительные диоды выходной схемы;

цепи управления выходного напряжения, например, на 12 вольт с подстройкой, изготовленной на оптопаре и транзисторах;

силовые дроссели, выполняющие роль коррекции напряжения и его диагностики в сети;

Пример электронной платы подобного импульсного блока питания с кратким обозначением элементной базы показан на картинке.

Как работает импульсный блок питания

Импульсный блок питания выдает стабилизированное питающее напряжение за счет использования принципов взаимодействия элементов инверторной схемы.

Напряжение сети 220 вольт поступает по подключенным проводам на выпрямитель. Его амплитуда сглаживается емкостным фильтром за счет использования конденсаторов, выдерживающих пики порядка 300 вольт, и отделяется фильтром помех.

Входной диодный мост выпрямляет проходящие через него синусоиды, которые затем преобразуются транзисторной схемой в импульсы высокой частоты и прямоугольной формы с определенной скважностью. Они могут преобразовываться:

1. с гальваническим отделением сети питания от выходных цепей;

2. без выполнения подобной развязки.

Импульсный блок питания с гальванической развязкой

В этом случае высокочастотные сигналы направляются на импульсный трансформатор, осуществляющий гальваническую развязку цепей. За счет повышенной частоты увеличивается эффективность использования трансформатора, снижаются габариты его магнитопровода и вес. Чаще всего для материала подобного сердечника применяют ферромагнетики, а электротехнические стали в этих устройствах практически не используются. Это также позволяет минимизировать общую конструкцию.

Один из вариантов исполнения схемы импульсного блока питания с трансформаторной развязкой цепей показан на картинке.

В таких устройствах работают три взаимосвязанных цепочки:

2. каскад из силовых ключей;

3. импульсный трансформатор.

Как работает ШИМ-контроллер

Контроллером называют устройство, которое управляет каким-либо технологическим процессом. В рассматриваемых нами блоке питания им выступает процесс преобразования широтно-импульсной модуляции. В его основу заложен принцип выработки импульсов одинаковой частоты, но с разной длительностью включения.

Подача импульса соответствует обозначению логической единицы, а отсутствие — нуля. При этом они все равны по величине амплитуды и частоте (имеют одинаковый период колебаний Т). Продолжительность включенного состояния единицы и его отношение к периоду меняются и позволяют управлять работой электронных схем.

Типовые изменения ШИП-последовательностей показаны на графике.

Контроллеры обычно создают подобные импульсы с частотой 30÷60 кГц.

В качестве примера можно привести контроллер, выполненный на микросхеме TL494. Для настройки частоты выработки его импульсов используется схема, состоящая из резисторов с конденсаторами.

Работа каскада из силовых ключей

Он состоит из мощных транзисторов, которые подбираются из биполярных, полевых или IGBT-моделей. Для них может быть создана индивидуальная система управления на других маломощных транзисторах либо интегральных драйверах.

Силовые ключи могут быть включены по различным схемам:

со средней точкой.

Импульсный трансформатор

Первичная и вторичная обмотки, смонтированные вокруг г магнитопровода из феррита или альсифера, способны надежно передавать высокочастотные импульсы с частотой вплоть до 100 кГц.

Их работу дополняют цепочки из фильтров, стабилизаторов, диодов и других компонентов.

Импульсные блоки питания без гальванической развязки

В импульсных блоках питания, разработанных по алгоритмам, исключающим гальваническое разделение, высокочастотный разделительный трансформатор не используется, а сигнал поступает сразу на фильтр нижних частот. Подобный принцип работы схемы показан ниже.

Особенности стабилизации выходного напряжения

Все импульсные блоки питания имеют в своем составе элементы, осуществляющие отрицательную обратную связь с выходными параметрами. За счет этого они обладают хорошей стабилизацией выходного напряжения при изменяющихся нагрузках и колебаниях питающей сети.

Способы реализации обратной связи зависят от применяемой схемы для работы блока питания. Она может осуществляться у блоков, работающих с гальванической развязкой за счет:

1. промежуточного воздействия выходного напряжения на одну из обмоток высокочастотного импульсного трансформатора;

2. применения оптрона.

В обоих случаях эти сигналы управляют скважностью импульсов, подаваемых на выход ШИМ-контроллера.

При использовании схемы без гальванической развязки обратная связь обычно создается за счет подключения резистивного делителя напряжения.

Преимущества импульсных блоков питания над обычными аналоговыми

При сравнении конструкций блоков с равными показателями выходных мощностей импульсные блоки питания обладают следующими достоинствами:

1. уменьшенный вес;

2. повышенный КПД;

3. меньшая стоимость;

4. расширенный диапазон питающих напряжений;

5. наличие встроенных защит.

1. Пониженный вес и габариты импульсных блоков питания объясняются переходом от преобразований низкочастотной энергии мощными и тяжелыми силовыми трансформаторами с управляющими системами, расположенными на больших радиаторах охлаждения и работающими в постоянном линейном режиме, к технологиям импульсного преобразования и регулирования.

За счет повышения частоты обрабатываемого сигнала сокращается емкость конденсаторов у фильтров напряжения и, соответственно, их габариты. Также упрощается их схема выпрямления вплоть до перехода к самой простой — однополупериодной.

2. У низкочастотных трансформаторов значительная доля потерь энергии создается за счет выделения и рассеивания тепла при выполнении электромагнитных преобразований.

В импульсных блоках наибольшие потери энергии создаются во время возникновения переходных процессов при коммутациях каскадов силовых ключей. А в остальное время транзисторы находятся в устойчивом положении: открыты или закрыты. При таком их состоянии создаются все условия для минимальной потери электроэнергии, когда КПД может составлять 90÷98%.

3. Цена на импульсные блоки питания постепенно снижается за счет постоянно проводимой унификации элементной базы, которая производится широким ассортиментом на полностью механизированных предприятиях со станками-роботами. К тому же режим работы силовых элементов на основе управляемых ключей позволяет использовать менее мощные полупроводниковые детали.

4. Импульсные технологии позволяют запитывать блоки питания от источников напряжения с разной частотой и амплитудой. Это расширяет область их применения в условиях эксплуатации с различными стандартами электрической энергии.

5. Благодаря использованию малогабаритных полупроводниковых модулей, работающих по цифровым технологиям, в конструкцию импульсных блоков удается надежно встраивать защиты, контролирующие возникновение токов коротких замыканий, отключения нагрузок на выходе прибора и другие аварийные режимы.

У обычных трансформаторных блоков питания такие защиты создавались на старой электромеханической, релейной, полупроводниковой базе. Применять сейчас для них цифровые технологии в большинстве схем не имеет смысла. Исключение составляют случаи питания:

маломощных цепей управления сложной бытовой техники;

слаботочных устройств управления высокой точности, например, используемых в измерительной технике или метрологических целях (цифровые счетчики электроэнергии, вольтметры).

Недостатки импульсных блоков питания

В/ч помехи

Поскольку импульсные блоки питания работают по принципу преобразования высокочастотных импульсов, то они в любом исполнении вырабатывают помехи, транслируемые в окружающую среду. Это создает необходимость их подавления различными способами.

В отдельных случаях помехоподавление может быть неэффективным, что исключает использование импульсных блоков питания для отдельных типов точной цифровой аппаратуры.

Ограничения по мощности

Импульсные блоки питания имеют противопоказание к работе не только на повышенных, но и пониженных нагрузках. Если в выходной цепи произойдет резкое снижение тока за предел минимального критического значения, то схема запуска может отказать или блок станет выдавать напряжение с искаженными техническими характеристиками, не укладывающимися в рабочий диапазон.

Отличия импульсного блока питания от обычного

Отличия импульсного блока питания от обычного

Отличия импульсного блока питания от обычного между трансформаторным и импульсными, а также их достоинства и недостатки. Например трансформаторный блок питания, в составе которого имеется трансформатор выполняющий функцию понижения сетевого напряжения до заданного, такая конструкция называется понижающим трансформатором.

Блоки питания работающие в импульсном режиме являются импульсным преобразователем или инвертором. В импульсных источниках питания переменное напряжение на входе вначале выпрямляется, а затем происходит формирование импульсов необходимой частоты. У такого ИП в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.

Трансформаторные блоки питания

Самым распространенным блоком питания считается конструкция, в составе которого имеется понижающий трансформатор, его определенная обязанность — понижать входное напряжение. Его первичная обмотка намотана с учетом работы с сетевым напряжением. Кроме понижающего трансформатора в таком БП установлен еще выпрямитель собранный на диодах, как правило применяется две пары выпрямительных диодов (диодный мост) и конденсаторах фильтра. Такое устройство служит для преобразования однонаправленного пульсирующего переменного напряжение в постоянное. Не редко применяются и другие конструктивно выполненные устройства, например, выполняющий в выпрямителях функцию удвоения напряжения. Кроме сглаживающих пульсации фильтров, там же могут быть элементы фильтра помех высокой частоты и всплесков, схема защиты от короткого замыкания, полупроводниковые приборы для стабилизации напряжения и тока.


Схема простейшего трансформаторного БП c двухполупериодным выпрямителем

Достоинства трансформаторных блоков питания

● Простота в конструировании
● Высокая надежность
● Доступность составляющих компонентов
● Отсутствие паразитных радио-волновых помех (Отличия блоков питания от импульсных блоков питания, которые создают помехи в виде напряжений и токов синусоидальной формы, которые во много раз выше частоты электросети)
● Имеющиеся недостатки трансформаторных блоков питания
● Солидный вес и размеры, особенно высокомощные
● Для изготовления требуется много железа
● Компромиссное решение относительно уменьшения КПД и высокой стабильностью напряжения на выходе: для получения стабильного напряжения необходим стабилизатор, с применением которого появляются дополнительные потери.

Читать еще:  Что делать если скучно дома за компьютером

Импульсные блоки питания

Отличия импульсного блока питания от обычного — импульсные источники питания это инверторное устройство и является составляющей частью аппаратов бесперебойного электрического питания. В импульсных блоках переменное напряжение на входе вначале выпрямляется, а потом формирует импульсы определенной частоты. Преобразованное выходное постоянное напряжение имеет импульсы прямоугольной формы высокой частоты поступающее на трансформатор или сразу на выходной фильтр нижних частот.

В импульсных блоках питания часто используются небольшие по размерам трансформаторы — это вызвано тем, что при возрастании частоты увеличивается эффективность работы устройства, тем самым становятся меньше требования к размерам магнитопровода, необходимого для отдачи равнозначной мощности. В основном такой магнитопровод изготавливается из ферромагнитных материалов служащих проводниками магнитного потока. Отличия источников питания в частности от сердечника трансформатора низкой частоты, для изготовления которых применяется электротехническая сталь.

Отличия импульсного блока питания от обычного — происходящая в импульсных источниках питания стабилизация напряжения возникает за счет цепи отрицательной обратной связи. ООС дает возможность обеспечивать выходное напряжение на достаточно устойчивом уровне не взирая на периодические скачки входящего напряжения и значение сопротивления нагрузки. Отрицательную обратную связь также можно создать иными способами. Относительно импульсных источников питания имеющих гальваническую развязку от электрической сети, наиболее применяемый в таких случаях способ — это образование связи с помощью выходной обмотки трансформатора либо воспользоваться оптроном.

С учетом значения величины сигнала отрицательной обратной связи, которое зависит от напряжения на выходе, меняется скважность импульсных сигналов на выходном выводе ШИМ-контроллера. Если можно обойтись без гальванической развязки то, в таком случае, применяется обычный делитель напряжения собранный на постоянных резисторах. В конечном итоге, источник питания обеспечивает выходное напряжение стабильного характера.

Принципиальная схема простейшего однотактного импульсного БП

Достоинства импульсных блоков питания

● Если сравнивать относительно выходной мощности линейный стабилизатор и импульсный, то последний имеет некоторые достоинства:
● Относительно небольшой вес, получившийся в следствии того, что с увеличением частоты можно применять трансформаторы малых габаритов имея аналогичную выдаваемую выходную мощность.
● Большой вес линейного стабилизатора получается за счет использования массивных силовых трансформаторов, а также тяжелых теплоотводов силовых компонентов.
● Высокий КПД, который составляет около 98% полученный в следствии того, что штатные потери происходящие в импульсных стабилизирующих устройствах зависят от переходных процессов на стадии переключения ключа.
● Поскольку больший отрезок времени ключи находятся в стабильном либо включенном или выключенном состоянии, то соответственно и энергетические потери ничтожны;
● Относительно небольшая стоимость, образовавшаяся в следствии выпуска большого количества необходимых электронных элементов, в частности появление на рынке электронных товаров высокомощных транзисторных ключей. ● Помимо всего этого необходимо заметить существенно малую стоимость импульсных трансформаторов при аналогичной отдаваемой в нагрузку мощности.
● Имеющиеся в подавляющем большинстве блоках питания установленных схем защиты от всевозможных нештатных ситуаций, таких как защита от короткого замыкания или если не подключена нагрузка на выходе устройства.

Импульсный блок питания

Для обычного человека, не вникающего в электронику, был незаметен переход всех питающих устройств с линейных на импульсные. Именно импульсные источники (ИИП) питания устанавливаются во всей современной аппаратуре. Основная причина перехода на такой тип преобразователей напряжения — это уменьшение габаритов. Так как всё время, с начала появления и изобретения, электронные приборы требуют постоянного уменьшения их размеров. На рисунке изображен для сравнения габариты обычного и импульсного источника постоянного тока. Не вооруженным глазом видны различия в размерах.

Принцип действия ИИП и его устройство

Импульсный источник питания — это устройство, которое работает по принципу инвертора, то есть сначала преобразует переменное напряжение в постоянное, а потом снова из постоянного делает переменное нужной частоты. В конечном итоге последний каскад преобразователя всё равно основан на выпрямлении напряжения, так как большинство приборов всё же работают на пониженном постоянном напряжении. Суть уменьшения габаритов этих питающих и преобразующих устройств построена на работе трансформатора. Дело в том, что трансформатор не может работать с постоянным напряжением. Просто-напросто на выходе вторичной обмотки при подаче на первичную постоянного тока не будет индуктироваться ЭДС (электродвижущая сила). Для того чтобы на вторичной обмотке появилось напряжения оно должно меняться по направлению или же по величине. Переменное напряжение обладает этим свойством, ток в нём меняет своё направление и величину с частотой 50 Гц. Однако, чтобы уменьшить габариты самого блока питания и соответственно трансформатора, являющегося основой гальванической развязки, нужно увеличить частоту входного напряжения.

При этом импульсные трансформаторы, в отличие от обычных линейных, имеют ферритовый сердечник магнитопровода, а не стальной из пластин. И также современные блоки питания работающие по этому принципу состоят из:

  1. выпрямителя сетевого напряжения;
  2. генератора импульсов, работающего на основе ШИМ (широтно-импульсная модуляция) или же триггера Шмитта;
  3. преобразователя постоянного стабилизированного напряжения.

После выпрямителя сетевого напряжения генератор импульсов с помощью ШИМ генерирует его в переменное с частотой около 20–80 кГц. Именно это повышение с 50 Гц до десятков кГц и позволяет значительно уменьшить, и габариты, и массу источника питания. Верхний диапазон мог быть и больше, однако, тогда устройство будет создавать высокочастотные помехи, которые будет влиять на работу радиочастотной аппаратуры. При выборе ШИМ стабилизации обязательно нужно учитывать также и высшие гармоники токов.

Даже при работе на таких частотах эти импульсные устройства вырабатывают высокочастотные помехи. А чем больше их в одном помещении или в одном закрытом помещении тем больше их в радиочастотах. Для поглощения этих негативных влияний и помех устанавливаются специальные помехоподавляющие фильтры на входе устройства и на его выходе.

Это наглядный пример современного импульсного блока питания применяемого в персональных компьютерах.

A — входной выпрямитель. Могут применяться полумостовые и мостовые схемы. Ниже расположен входной фильтр, имеющий индуктивность;
B — входные с довольно большой емкостью сглаживающие конденсаторы. Правее установлен радиатор высоковольтных транзисторов;
C — импульсный трансформатор. Правее смонтирован радиатор низковольтных диодов;
D — катушка выходного фильтра, то есть дроссель групповой стабилизации;
E — конденсаторы выходного фильтра.
Катушка и большой жёлтый конденсатор, находящиеся ниже E, являются компонентами дополнительного входного фильтра, установленного непосредственно на разъёме питания, и не являющегося фрагментом основной печатной платы.

Если схему радиолюбитель изобретает сам то он обязательно заглядывает в справочник по радиодеталям. Именно справочник является основным источником информации в данном случае.

Обратноходовой импульсный источник питания

Это одна из разновидностей импульсных источников питания, имеющих гальваническую развязку как первичных, так и вторичных цепей. Сразу был изобретён именно этот вид преобразователей, который был запатентован ещё в далёком 1851 году, а его усовершенствованный вариант применялся в системах зажигания и в строчной развертке телевизоров и мониторов, для подачи высоковольтной энергии на вторичный анод кинескопа.

Основная часть этого блока питания тоже трансформатор или может быть дроссель. В его работе есть два этапа:

  1. Накопление электрической энергии от сети или от другого источника;
  2. Вывод накопленной энергии на вторичные цепи полумоста.

Во время размыкания и замыкания первичной цепи во вторичной появляется ток. Роль размыкающего ключа выполнял чаще всего транзистор. Узнать параметры которого нужно обязательно использовать справочник. управление же этим транзистором чаще всего полевым выполняется за счёт ШИМ-контроллера.

Управление ШИМ-контроллером

Преобразование сетевого напряжения, которое уже прошло этап выпрямления, в импульсы прямоугольной формы выполняется с какой-то периодичностью. Период выключения и включения этого транзистора выполняется с помощью микросхем. ШИМ-контроллеры этих ключей являются основным активным управляющим элементом схемы. В данном случае как прямоходовой, так и обратноходовой источник питания имеет трансформатор, после которого происходит повторное выпрямление.

Для того чтобы с увеличением нагрузки не падало выходное напряжение в ИИП была разработана обратная связь которая была заведена непосредственно в ШИМ-контроллеры. Такое подключение даёт возможность полной стабилизации управляемым выходным напряжения путём изменения скважности импульсов. Контроллеры, работающие на ШИМ модуляции, дают большой диапазон изменения выходного напряжения.

Микросхемы для импульсных источников питания могут быть отечественного или зарубежного производства. Например, NCP 1252 – ШИМ-контроллеры, которые имеют управление по току, и предназначены для создания обоих видов импульсных преобразователей. Задающие генераторы импульсных сигналов этой марки показали себя как надёжные устройства. Контроллеры NCP 1252 обладают всеми качественными характеристиками для создания экономически выгодных и надежных блоков питания. Импульсные источники питания на базе этой микросхемы применяются во многих марках компьютеров, телевизоров, усилителей, стереосистем и т. д. Заглянув в справочник можно найти всю нужную и подробную информацию обо всех её рабочих параметрах.

Преимущество импульсных источников питания перед линейными

В источниках питания на импульсной основе видны целый ряд преимуществ, которые качественно выделяют их от линейных. Вот основные из них:

  1. Значительное снижение габаритов и массы устройств;
  2. Уменьшение количества дорогостоящих цветных металлов, таких как медь, используемых в их изготовлении;
  3. Отсутствие проблем при возникновении короткого замыкания, в большей степени это касается обратноходовых устройств;
  4. Отличная плавная регулировка выходного напряжения, а также его стабилизация путём введения обратной связи в ШИМ-контроллеры;
  5. Высокие показатели КПД.

Однако, как и всё в этом мире, импульсные блоки имеют свои недостатки:

  1. Излучение помех, которые могут появляется при неисправных помехоподавляющих цепочек, чаще всего это высыхание электролитических конденсаторов;
  2. Нежелательная работа их без нагрузки;
  3. Более сложная схема с применением большего количества деталей для поиска аналогов которых необходим справочник.

Применение источников питания на основе высокочастотной модуляции (в импульсных) в современной электронике как в быту, так и на производстве, существенно повлияли на развитие всей электронной техники. Они давно вытеснили с рынка устаревшие источники, построенные на традиционной линейной схеме, и в дальнейшем будут только усовершенствоваться. ШИМ-контроллеры при этом являются сердцем этого аппарата и развитие их функциональности и технических характеристик постоянно улучшается.

Видео о работе импульсного источника питания

Отличия импульсного блока питания от обычного

Практически все современные электроустройства работают на импульсных источниках питания. Аналоговые (трансформаторные) БП почти не используются, потому что технически и морально устарели. Перед тем как сделать выбор, нужно подробно рассмотреть, какие есть преимущества ИБП. Понять, в чем их отличие от аналоговых и почему их применяют только в старых электроприборах.

Принцип работы ИБП

Основной функцией любого ИП, в том числе и импульсного БП является стабилизация напряжения в электросетях. ИБП — это прибор для выпрямления сетевого напряжения с последующим формированием электрического высокочастотного импульса.

Обратите внимание!

Аналоговый БП трансформаторного типа, для изменения напряжения в сети использует трансформатор, который питается от электросетей в 220В. ТБП предназначен для понижения напряжения в сети.

Читать еще:  Knox notification manager что это

ТБП сейчас практически не используются в электро-устройствах ввиду непрактичности и больших габаритов.

Отличия импульсного БП от аналогового представлены в таблице сравнительной характеристики:

Около 98%, в процессе преобразования напряжения потери энергии минимальны

Высокая. Большинство моделей устарели и сняты с производства, поэтому есть дефицит запчастей

Из таблицы видно, что преимущества импульсного блока питания перед трансформаторным очевидны.

Структуры и схемы блоков питания

Выделяют два типа ИБП: без трансформаторов; БП с трансформатором. В бестрансформаторных БП импульсный ток напрямую идет на выпрямитель напряжения. Его схема проста и состоит из минимального набора элементов: специальная интегральная микросхема и широт-импульсный генератор. Бестрансформаторные БП имеют небольшую мощность. Так как в их схеме отсутствует гальваническая связь с сетью питания, то есть вероятность поражения электричеством.

Обратите внимание!

БП с трансформатором более безопасны и надежны. Кроме того, они при малых размерах за счет количества витков обмотки способны увеличивать мощность блока питания.

Каждый виток обмотки имеет свой выпрямитель напряжения, таким образом обеспечивая его стабильность на выходе. В большинстве настольных ПК используются БП с силовыми трансформаторами.

Типичная схема БП с трансформатором состоит из:

  • сетевого фильтра с подавителем помех;
  • выпрямителя;
  • фильтр для сглаживания;
  • широт-импульсного преобразователя;
  • транзисторов-ключей;
  • высокочастотного трансформатора на выходе;
  • выходных и индивидуальных групповых фильтров;
  • выпрямителя.

Блок питания с силовым трансформатором

Силовые трансформаторы для ИБП бывают двух типов: с косой и без косы. Оба типа могут использоваться для установки в импульсные блоки питания.

Трансформатор с косой состоит из трех обмоток, первичная цепь — 1 обмотка, состоящая из двух полуобмоток по 20-ть витков и вторичная цепь — состоит тоже из 2-х полуобмоток, которые соединяются в косе. Каждая полуобмотка состоит из семи витков, последовательно соединенных между собой по электросхеме, каждый виток равен 1 Вольт. Последовательное соединение между собой обмоток увеличивает мощность.

Применение силовых трансформаторов для блока питания импульсного типа обусловлено рядом преимуществ:

  • последовательное соединение обмоток трансформатора обеспечивает стабильность напряжения в блоке;
  • простота сборки и доступность элементов;
  • возможность повысить мощность силы тока за счет количества обмоток;
  • малое энергопотребление.

У силовых трансформаторов есть такие недостатки:

  • при ненадежной изоляции соединений на косе возможно короткое замыкание;
  • индукция электромагнитного поля может создавать помехи.

Алгоритм работы ИБП

Принцип действия ИБП прост: напряжение на входе выпрямляется и преобразуется в электронные высокочастотные импульсы. На выходе электроцепь формирует сигнал ООС, которым осуществляется регулировка импульсов.

Преимущества использования импульсного БП очевидны:

  • небольшие размеры и вес;
  • малое энергопотребление;
  • простота в сборке;
  • низкие энергопотери;
  • высокий КПД;
  • наличие защиты;
  • низкая цена на комплектующие.

К минусам применения ИБП относят наличие электромагнитных помех ввиду их работы на импульсах высокой частоты.

В персональных стационарных компьютерах, как правило, применяют ИБП с силовым трансформатором. Для работы силовой прибор использует свойства и принципы электромагнитной индукции. Это дает возможность передавать ток без существенных потерь на большие расстояния.

Принцип работы импульсных блоков питания. Схема импульсного блока питания

Блоки питания всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается ограничение тока. Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

Работа блоков на 12 вольт

Импульсный блок питания (12 вольт) включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Читать еще:  Гудит вентилятор в ноутбуке что делать

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.

ИМПУЛЬСНЫЕ БЛОКИ ПИТАНИЯ

Среди всех блоков питания можно выделить два основных типа:

  • линейные;
  • импульсные (инверторные) источники.

В подавляющем большинстве случаев линейный источник питания состоит из трансформатора, преобразующего переменное напряжение, силового выпрямителя, сглаживающего фильтра и стабилизатора. Линейные блоки питания наиболее просты в схемотехническом плане и имеют низкий уровень помех.

Самый крупный недостаток — большие габариты и вес понижающего трансформатора и низкий КПД, особенно в случае большой нестабильности входного напряжения. Массивный силовой трансформатор с большой тепловой инерционностью затрудняет даже принудительное охлаждение при больших нагрузках.

Основные отличия импульсных стабилизаторов.

Импульсные источники питания тоже имеют в составе понижающий трансформатор. Только в данном случае он работает на высокой частоте и имеет несравненно меньшие габариты и массу. Малые габариты элементов облегчают отвод тепла пассивными (применение радиаторов) и активными (вентиляторы) методами.

При фильтрации и стабилизации высокочастотного напряжения с выхода импульсного трансформатора упрощается построение выходных фильтров, поскольку для фильтрации пульсаций напряжения высокой частоты нужна меньшая емкость конденсаторов.

Инверторным блокам питания присущи несколько существенных недостатков — сложное устройство, высокий уровень электромагнитных помех и, в некоторых случаях, гальваническая связь выходных и входных цепей.

Впрочем, отработанная схемотехника подобных устройств в настоящее время уже не считается сложной, а помехи снижаются путем грамотного расчета узлов и дополнительной экранировкой.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Импульсный блок питания состоит из следующих элементов:

  • входной выпрямитель;
  • блок конденсаторов;
  • схема управления;
  • выходные ключи;
  • импульсный трансформатор;
  • вторичные (выходные) стабилизаторы и фильтры.

За счет того, что входное напряжение сначала преобразуется в постоянное, а затем обратно в переменное, точнее, в импульсы высокой частоты, импульсный высокочастотный трансформатор имеет очень малые габариты. Трансформатор преобразует высокочастотное переменное напряжение, поступающее от мощных транзисторных выходных ключей, которые, в свою очередь управляются широтно-импульсным (ШИМ) контроллером.

Такое название схема управления получила из-за того, что изменяя частоту и ширину (длительность) импульсов, можно регулировать время открытия ключевых транзисторов, изменяя, таким образом, значение выходного напряжения.

На ШИМ – контроллер (обычно это одна специализированная микросхема), поступает напряжение обратной связи с выхода блока питания или иные управляющие сигналы. Таким образом можно получить любые алгоритмы стабилизации выходного напряжения.

Стоит отметить, что наибольшей сложностью обладают устройства, которые предназначены для формирования нескольких значений напряжения на выходе с высокими требованиями к стабильности каждого из них. Как пример можно назвать блоки питания персональных компьютеров, телевизоров и других сложных устройств.

Такие блоки питания, как зарядные устройства для мобильных телефонов или иных маломощных гаджетов содержат малогабаритные специализированные микросхемы, в которых уже интегрированы все необходимые элементы. Такие блоки содержат минимум деталей и ремонтируются только энтузиастами, поскольку стоимость отдельных элементов порой сравнима со стоимостью нового зарядного устройства.

Высокий уровень помех импульсных устройств обусловлен тем, что управляющие импульсы высокой частоты имеют практически прямоугольную форму и поэтому имеют высокий уровень гармонических составляющих в большом диапазоне частот. Мощные транзисторы в момент переключения также становятся сильными источниками электромагнитного излучения. Для снижения помех схемы обычно дополняются помехоподавляющими цепями и заключаются в экранирующий корпус.

Малые габариты устройства и наличие схемы управления позволяют дополнить схемотехнику самыми различными схемами контроля как входного, так и любых выходных цепей, включая программное управление характеристиками.

ОБЛАСТИ ПРИМЕНЕНИЯ

Импульсные блоки питания в настоящее время используются в подавляющем большинстве устройств мощностью от долей ватта до единиц киловатт. Верхний предел ограничен параметрами выпускаемых на текущий момент транзисторов. Это ограничение можно обойти довольно просто, соединяя несколько идентичных маломощных блоков питания параллельно.

Для одинаковой и равномерной нагрузки отдельных составляющих, они объединяются по сигналам обратной связи. Постоянное совершенствование технологии разработки и конструирования полупроводниковых приборов, создание новых классов транзисторов (IGBT, MOSFET) стимулирует создание все более мощных импульсных устройств.

Даже большое число параллельно включенных устройств по массе и габаритам значительно меньше аналогичного по мощности понижающего трансформатора стандартной частоты 50 Гц, поэтому очень часто делают некоторый избыток блоков для того, чтобы при выходе одного из них он автоматически выключался и работа устройств не нарушалась.

Сам принцип работы обеспечивает широкий диапазон допустимого входного напряжения. Например импульсные блоки питания бытовых устройств при нормальном напряжении сети 220 В, способны работать вплоть до диапазона 80 — 250 В, то есть при таких напряжениях, когда обычный линейный стабилизатор выходит из границ стабильной работы.

ТИПОВЫЕ НЕИСПРАВНОСТИ И РЕМОНТ

Как ни странно будет звучать, но импульсным блокам питания гораздо страшнее низкое входное напряжения, чем высокое. Верхний предел обычно ограничен номинальным напряжением электролитических конденсаторов фильтра и допустимым обратным напряжением выпрямительных диодов.

Многие импульсные блоки питания нестабильно работают, когда нагрузка выхода имеет малое значение или вообще отсутствует. Отсутствие обратной связи на входе ШИМ контроллера приводит к тому, что транзисторные ключи полностью открываются и блок выходит из строя буквально через несколько минут. Соответствующие схемные решения позволяют избавиться от такого недостатка.

Наиболее часто неисправности импульсных блоков питания вызываются:

  • выходом из строя диодов выпрямительного моста;
  • электролитических конденсаторов сглаживающего фильтра;
  • ключевых транзисторов.

Такое обычно происходит в случае сильно завышенного входного напряжения или длительной работы при пониженном. В подавляющем большинстве случаев даже нет необходимости в измерительных приборах — повреждения видны невооруженным глазом по разрушенным и вздувшимся элементам.

Гораздо реже выходят из строя элементы управляющей схемы (ШИМ-контроллера) и обратной связи. В данном случае без измерений не обойтись.

Крайне редки случаи повреждения импульсного трансформатора. Обычно их габариты позволяют выполнять сборку с большими запасами по току и мощности. Поэтому неисправности случаются только при некачественном выполнении.

Практика ремонтов показывает, что львиная доля неисправностей происходит по причине крайне низкого качества некоторых типов электролитических конденсаторов.

Падение емкости или большое внутреннее сопротивление конденсаторов выходных цепей может приводить к неправильной работе обратной связи, в результате чего выходное напряжение перестает соответствовать норме.

Обычно ремонт серьезных импульсных блоков питания требует несколько большей квалификации специалистов, чем ремонт традиционных схем и требует таких измерительных приборов, как осциллограф.

Часть элементов схемы блока питания находится под напряжением сети. Это выпрямительные диоды, конденсаторы, ключевые транзисторы и первичная обмотка импульсного трансформатора.

Ремонт таких устройств можно выполнять только при отключенном блоке с разряженными конденсаторами фильтра. В крайнем случае можно производить некоторые работы и под напряжением, но только с обязательной гальванической развязкой блока от питающей сети через разделительный трансформатор.

При прикосновении к корпусу прибора можно получить удар электрическим током, опасным для жизни. Для обеспечения безопасности, все импульсные блоки питания должны быть в обязательном порядке заземлены или иметь корпус из изоляционного материала.

Современное бытовое оборудование и часть промышленного позволяют производить заземление непосредственно через шнур питания. Для этого в паре розетка — вилка предусмотрены отдельные контакты для подключения заземления.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: